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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TRANSONIC AERODYNAMIC CHARACTERISTICS 

OF A HORIZONTAL TAKE- OFF-AND-HORIZONTAL LANDING 

A transonic investigation has been made of a preliminary concept 
of a horizontal- take-off-ad-horizontal-  landing recoverable f irst-  stage 
booster with various large upper stages. The recoverable booster con- 
s i s t e d  of a wedge-slab TO0 d e l t a  wing with a semicylindrical fuselage. 
The upper stages consisted of e i the r  a one-stage o r  a two-stage expend- 
able rocket booster and a b a l l i s t i c ,  rocket, o r  winged-rocket spacecraft. 
The upper stages were tes ted  i n  both piggyback and underslung posit ions 
on both a high-wing and a low-wing recoverable booster. The t e s t s  were 
made i n  the 8-foot transonic pressure tunnel over a Mach number range 
from 0.6 t o  1.2. 
of-attack range from -2' t o  12O. The Reynolds number per foot  varied 
from 1.6 x 106 t o  3.2 X 106. 

D a t a  were obtained at 0' and 5' s ides l ip  over an angle- 

The r e s u l t s  showed t h a t  only small changes i n  longitudinal s t a b i l i t y  
and t r i m  occurred when e i t h e r  the one-stage or two-stage rocket booster 
w a s  added t o  the  recoverable booster. However, the in s t a l l a t ion  of upper 
s tages  t o  the recoverable booster caused a s ignif icant  reduction i n  the 
d i r ec t iona l  s t a b i l i t y .  An increase of as much as 50 percent i n  transonic 
drag was  a t t r i bu tab le  t o  the upper stages, but improvement i n  the drag 
could be achieved by closing the afterbody. The one-stage rocket booster 
caused a la rger  transonic drag r i s e  than the two-stage rocket booster 
because of the adverse e f f ec t  on the ove ra l l  area dis t r ibut ion.  
high-wing nor low-wing arrangements offered d i s t i n c t  advantages i n  s ta -  
b i l i t y  or drag. 

Neither 
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Some of the ant ic ipated advantages of placing large payloads i n  

(VTOHL) recoverable-booster system have been outlined i n  reference 1, 
and the transonic aerodynamic charac te r i s t ics  of a VTOHL recoverable 

booster consis ts  of using a manned horizontal-take-off-and-horizontal- 
landing (HTOHL) vehicle as f i r s t  stage, and mounting the upper stages i n  

I ear th  o rb i t  through the use of a vertical-take-off-and-horizontal-landing 

I booster were reported therein.  An a l t e rna te  approach t o  the recoverable 
I 

para l l e l  with the f i rs t  stage. Such a booster, i f  propelled by air- L 
ingestion engines, o f f e r s  the following capab i l i t i e s  i n  addition t o  those 1 
indicated i n  reference 1: o f f s e t  launch capabi l i ty  through the use of 9 

I aerodynamic f l i g h t  t o  the  required o r b i t  plane; f e r r y  f l i g h t  of the launch -3 
vehicle, and possibly of upper-stage elements; pi loted control  of both 5 
launch a l t i t ude  and at t i tude;  large d ive r s i ty  of upper- stage configura- 
tions; normal development and t e s t ing  of the first stage throughout i t s  
f l i g h t  envelope; and growth potent ia l .  
recoverable-booster system l i e s  i n  i t s  inherent high aerodynamic efficiency. 

A pr inc ipa l  advantage of the HTORL 

U N C W D  

INTRODUCTION 
5' 4 

A program of invest igat ion t o  determine the aerodynamic character- 
i s t i c s  of horizontal-take-off-and-horizontal-landing recoverable-booster 
concepts has, therefore, been undertaken at  transonic and hypersonic 
speeds. The present paper contains r e s u l t s  f o r  several  preliminary con- 
f igurat ions investigated a t  transonic speeds. Results of tests of the 
f i r s t - s t age  recoverable booster alone were reported i n  reference 2. For 
the present investigation, the upper stages consisted of several  rocket 
boosters and spacecraft mounted i n  p a r a l l e l  with the winged recoverable 
booster. Mission requirements were establ ished t o  place a maximum Of 
approximately 30,000 pounds of spacecraft  i n to  a 300-nautical-mile o rb i t .  
A s  indicated i n  reference 2, the  f i r s t  stage w a s  conceived t o  u t i l i z e  
turboramjet power plants with the hydrocarbon f u e l  car r ied  e n t i r e l y  
within the fuselage. Firs t -s tage separation w a s  estimated t o  occur a t  
a Mach number of 6.0 and an a l t i t u d e  of about 100,000 feet, with the 
upper stages sized f o r  the spec i f ic  mission. Gross take-off wing loading 
w a s  assumed t o  be 120 lb/sq f t  and the r a t i o  of t h rus t  t o  gross weight 
w a s  assumed t o  be 0.60. 
recoverable booster w a s  approximately 40 lb/sq f t .  
t ions,  the models tes ted  were approximately 1/50 scale .  
the investigation i s  t o  provide preliminary aerodynamic information t o  
assist i n  the evaluation of the technical  f e a s i b i l i t y  of the  recoverable- 
booster concept. 

Data were obtained over a range of angles of a t t ack  from -2' t o  12O. 

The re su l t an t  landing wing loading f o r  the 
With the above assump- 

The purpose of 

A f e w  d a t a  were obtained a t  a s i d e s l i p  angle of 5'. 
per foot varied from about 1.6 x 10 6 t o  3.2 x 10 6 . The Reynolds number 
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SYMBOLS 

L 
1 
9 
3 ,  
5 

The r e s u l t s  of t h i s  invest igat ion a r e  presented i n  coef f ic ien t  and 
parameter form, referred t o  the s t a b i l i t y  axes f o r  longi tudinal  data and 
the body axes f o r  la te ra l -d i rec t iona l  data.  
a t  0.23'c i n  the chord plane of the  wing, and w a s  16.5 inches forward of 
the model base. 

The moment reference w a s  

CL 

CD 

Cm 

Cn 

CY 

b 

l i f t  coeff ic ient ,  - L i f t  
(2s 

drag coeff ic ient ,  
qs 

Pitching moment 
pitching-moment coeff ic ient  about 0.2'3?, qs: 

Rolling moment 
qSb 

rolling-moment coefficient,  

Yawing moment 
yawing-moment coeff ic ient ,  

qSb 

Side force side-force coeff ic ient ,  
qs  

l i f t -curve  slope, &!L/&.L, per deg 

longitudinal-  s t a b i l i t y  parameter, aCm /&I, 

drag-due-to-lif t  f a c t o r  

effect ive-dihedral  parameter, ACz/AP, per deg 

d i r ec t iona l - s t ab i l i t y ,  parameter, ACn/AP, per deg 

side-force parameter, ACy/AP, per deg 

l i f t - d r a g  ra t io ,  CL/cD 

wing span, in. 
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C wing chord, in .  

C mean aerodynamic chord, based on t o t a l  wing area, i n .  

M free-stream Mach number 

q 

R Reynolds number per foot  

S wing area, sq f t  

- 

free-stream dynamic pressure, lb/sq f t  

aerodynamic-center locat ion Xac - - 
C 

U angle of attack, deg 

P angle of s ides l ip ,  deg 

Subscripts: 

b at model base 

0 at zero l i f t  

m a x  m a x i m u m  

DESCRIPTION OF MODEL 

The model consisted of a wing and body t o  simulate the f i r s t - s t age  
recoverable booster ( r e f .  2) together  with upper stages arranged i n  
pa ra l l e l  as shown i n  f igures  l (a )  and l ( b ) .  
w a s  sized t o  provide an estimated take-off wing loading of I20 lb/sq ft  
f o r  the l a rges t  complete configuration and w a s  i d e n t i c a l  t o  the model 
of reference 2. Dimensions of the expendable rocket boosters conformed 
approximately t o  those of severa l  boosters cur ren t ly  being developed. 
The fuselage of the recoverable booster w a s  a semicylinder 6 diameters 
long with an ogival  nose 7 diameters long. The volume of the  fuselage 
w a s  approximately t h a t  required i f  conventional t u rbo je t  or turboram- 
j e t  propu~sion were t o  be u t i l i z e d .  No powerplant packages o r  i n l e t s  
were incorporated in to  the preliminary configuration. The wing had a 
d e l t a  planform with leading-edge sweep of 700 and a wedge-slab sec t ion  
with constant 2-percent thickness rearward of the  40-percent-chord sta- 
t i on .  (See f ig .  1.) The wing sec t ion  w a s  unsymmetrical and w a s  mounted 
with the wedge surface adjacent t o  the  fuselage.  

The f i r s t - s t a g e  booster 

The root  chord w a s  

L 
1 
9 
-3 
5 
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ident ica l  t o  the fuselage length, and the mean aerodynamic chord, based 
on the  t o t a l  planform area, w a s  22.0 inches. 

Several rocket boosters and spacecraft were mounted e i t h e r  on the 
fuselage s ide o r  t he  wing side of the recoverable booster, as shown i n  
f igure 1. Thus, e i t h e r  piggyback or underslung arrangements were simu- 
lated.  For a l l  tes ts  the base of the rocket booster w a s  coincident with 
the model base. Two rocket boosters were used, as shown i n  f igure l ( c ) ;  
one w a s  approximately 5.5 diameters long t o  simulate a single rocket 
stage, and the other  w a s  approximately 13.3 diameters long t o  simulate 
a two-stage rocket booster. 

Three types of spacecraft were attached i n  turn t o  each of the two 
rocket boosters - a blunted 40° b a l l i s t i c  nose cone, a rocket with a 
r a t i o  of body diameter t o  booster diameter of 0.42, and a 70' d e l t a  wing 
with s l ab  sections and semicircular leading edge mounted on the rocket 
t o  form a winged rocket. Details of the spacecraft  a re  given i n  
f igure l ( c ) .  

Photographs of the take-off o r  launch configurations a re  presented 
i n  f igure 2 and the pr incipal  model dimensions are summarized i n  t ab l e  I. 

APPrnTUS AND TESTS 

The tests were made i n  the Langley 8-foot transonic pressure tun- 
n e l  a t  Mach numbers from 0.6 t o  1 .2  and a t  angles of a t tack  from -2' 
t o  12'. For one configuration, data  were obtained a t  both 0' and 5 O  

sidesl ip .  
t o  vary from about 1.6 x 106 t o  3.2 x lo6. 

The range of Reynolds number per  foot i s  shown i n  f igu re  3 

Six-component force and moment data were obtained by means of an 
i n t e r n a l l y  mounted strain-gage balance. 
s l i p  were corrected for balance and s t ing deflections under load. Axial 
force w a s  corrected t o  correspond t o  a base pressure, on the recoverable- 
booster fuselage and t h a t  portion of the wing base intercepted by the 
fuselage, equal t o  the  free-stream s t a t i c  pressure. The base drag on 
the rocket booster i s  included i n  the data. Transition w a s  f ixed by a 
0.1-inch band of No. 80 carborundum (0.008-inch-diameter grains)  at  the 
5-percent s t a t i o n  on a l l  surfaces. 

The angles of a t tack  and side- 

The accuracy of the da ta  has been estimated on the bas i s  of repeat- 
a b i l i t y  of da ta  and balance accuracy t o  be approximately as follows: 

1 INCLASSIFIED 
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PRESENTATION OF RESULTS 

The data f a l l  in to  three pr incipal  divisions: charac te r i s t ics  of 
configurations with the high-wing recoverable booster, charac te r i s t ics  
of configurations with the low-wing recoverable booster, and e f f ec t s  of 
adding upper stages t o  the recoverable booster. The data  are  presented 
as follows: 

Figure 

High-wing recoverable booster: 
Aerodynamic charac te r i s t ics  of the several  spacecraft  

attached t o  a one-stage rocket booster mounted on top 
of the high-wing recoverable booster 

of the high-wing recoverable booster 

. . . . . . . . . . .  
Aerodynamic charac te r i s t ics  of the several  spacecraft 

attached t o  a two-stage rocket booster mounted on top 
. . . . . . . . . . .  

Aerodynamic charac te r i s t ics  of the winged-rocket spacecraft  
attached t o  a two-stage rocket booster mounted above or 
beneath the high-wing recoverable booster . . . . . . . . .  

Variation w i t h  Mach number of the longi tudina l -s tab i l i ty  
and drag parameters f o r  the several  spacecraft  attached 
t o  a one-stage rocket booster mounted on top of the 
high-wing recoverable booster . . . . . . . . . . . . . . .  

Variation with Mach number of the longi tudina l -s tab i l i ty  
and drag parameters f o r  the several  spacecraft  attached 
t o  a two-stage rocket booster mounted on top  of the 
high-wing recoverable booster . . . . . . . . . . . . . . .  

Variation w i t h  Mach number of the longi tudina l -s tab i l i ty  
and drag parameters fo r  the winged-rocket spacecraft  
attached t o  the two-stage rocket booster mounted above 
o r  beneath the high-wing recoverable booster . . . . . . .  

4 

5 

6 

7 

8 

9 
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Variation of the aerodynamic-center location with Mach num- 
ber f o r  the several  upper stages mounted on top of the 
high-wing recoverable booster . . . . . . . . . . . . . . . .  

Variation of the l i f t -d rag  r a t i o  with l i f t  coeff ic ient  f o r  
the several  upper stages mounted on top of the high-wing 
recoverable booster . . . . . . . . . . . . . . . . . . . . .  

bw-wing recoverable booster: 
Aerodynamic charac te r i s t ics  of the several  spacecraft 

attached t o  a one-stage rocket booster mounted beneath 
the low-wing recoverable booster . . . . . . . . . . . . . .  

Aerodynamic charac te r i s t ics  of the several  spacecraft 
attached t o  a two-stage rocket booster mounted beneath 
the low-wing recoverable booster . . . . . . . . . . . . . .  
attached t o  a two-stage rocket booster mounted above o r  
beneath the low-wing recoverable booster . . . . . . . . . .  

Variation with Mach number of the longi tudinal-s tabi l i ty  
and drag parameters f o r  the several spacecraft attached 
t o  a one-stage rocket booster mounted beneath the low- 
wing recoverable booster . . . . . . . . . . . . . . . . . .  

Variation with Mach number of the longi tudinal-s tabi l i ty  
and drag parameters f o r  the several spacecraft attached 
t o  a two-stage rocket booster mounted beneath the low- 
wing recoverable booster . . . . . . . . . . . . . . . . . .  

Variation with Mach number of the longi tudinal-s tabi l i ty  
and drag parameters f o r  the winged-rocket spacecraft 
attached t o  the two-stage rocket booster mounted above 
o r  beneath the low-wing recoverable booster . . . . . . . . .  
number f o r  the several  upper stages mounted beneath 
the low-wing recoverable booster . . . . . . . . . . . . . .  

Variation of the l i f t -drag  r a t i o  with l i f t  coeff ic ient  
f o r  the several  upper stages mounted beneath the low- 
wing recoverable booster . . . . . . . . . . . . . . . . . .  

Aerodynamic charac te r i s t ics  of the winged-rocket spacecraft 

Variation of the aerodynamic-center location with Mach 

Effect of adding upper stages: 
Variation with Mach number of the longi tudinal-s tabi l i ty  

parameter and zero- l i f t  drag coeff ic ient  f o r  the low- 
wing recoverable booster without and w i t h  a two-stage 
rocket booster and winged-rocket spacecraft mounted 
b e n e a t h t h e w i n g  . . . . . . . . . . . . . . . . . . . . . .  

7 

Figure 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
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Figure 

Aerodynamic charac te r i s t ics  f o r  the low-wing recoverable 
booster without and with a two-stage rocket booster and 
winged-rocket spacecraft  mounted beneath the wing. 
p = y )  . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

Lateral-direct ional  s t a b i l i t y  parameters for the  low-wing 
recoverable booster vi>hout and with a two-stage rocket 
booster and winged-rocket 'spacecraft  mounted beneath 
t h e w i n g . .  . . . . . . . . . . . . . . . . . . . . . . . .  22 

DISCUSSION 

High-Wing Recoverable Booster 

Longitudinal s tabi1i tx . -  Comparison of the data  of f igures  4 and 5 
f o r  the high-wing recoverable booster shows t h a t  the  e f f e c t s  of changing 
from a one-stage rocket booster t o  a two-stage rocket booster were gener- 
a l l y  small. The pr inc ipa l  e f f e c t  w a s  t h a t  a s m a l l  pos i t ive  increment i n  
Cm, o 
forward of the  wing leading edge regardless of which spacecraft  w a s  
ins ta l led,  and an e f fec t ive  upwash on the  wing, coupled with the increased 
projected a rea  forward of the wing leading edge, caused the  s t a b i l i t y  
changes shown. Figure 7 shows t h a t  when the spacecraft  w a s  located behind 
the leading edge of the  wing, as with the one-stage rocket booster, the 
only change i n  longi tudinal  s t a b i l i t y  r e su l t i ng  from changing from the  
b a l l i s t i c  t o  the winged-rocket spacecraf t  w a s  a s m a l l  decrease i n  sta- 
b i l i t y  near M = 1.0. However, with the two-stage rocket booster 
( f ig .  8), i n  which case the  spacecraf t  w a s  forward of the  wing leading 
edge, subst i tut ion of the winged-rocket spacecraf t  f o r  e i t h e r  the  bal-  
l i s t i c  o r  the rocket spacecraft  caused a des tab i l iz ing  increment i n  

Of about 0.02 over the  Mach number range. This i s  i n  good agree- 

resulted.  With the two-stage rocket booster, t he  spacecraf t  w a s  

c"cL 
ment with the value of 0.03 which had been estimated on the  bas i s  of 
the centroid of the combined areas of the  f i r s t - s t a g e  wing and space- 
c r a f t  wing. 
the winged-rocket spacecraft  shows t h a t  a decrease i n  s t a t i c  margin 
occurred when the two-stage rocket booster w a s  used (winged-rocket 
spacecraft i n  f ront  of leading edge of recoverable-booster wing) ra ther  
than t h e  one-stage rocket booster (winged-rocket spacecraft  behind 
leading edge of recoverable-booster wing). Furthermore, it i s  seen t h a t  
the increase  i n  s t a t i c  margin with M w a s  more abrupt for t h e  arrange- 
ments with the  one-stage rocket booster than f o r  those with the  two- 
s tage rocket booster. 

Comparison of f igures  7 and 8 f o r  the  configurations with 

U NCLASSI Fl E D 
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Figures 6 and 9 show t h a t  the pr incipal  e f f e c t  of moving the two- 
stage rocket booster and winged-rocket spacecraft from the wing s ide 
(piggyback) t o  the fuselage side (underslung) of the high-wing recover- 
able booster w a s  a s m a l l  decrease i n  the  longitudinal s t a b i l i t y  which 
varied from about 0.010 t o  0.015 over the Mach number range. As pre- 
viously mentioned, when the spacecraft w a s  s i tua ted  behind the leading 
edge of the wing of the recoverable booster, only s m a l l  changes i n  s ta-  
b i l i t y  occurred when the winged-rocket spacecraft was instal led;  there- 
fore, it i s  believed tha t  w i t h  the one-stage rocket booster the change 
i n  posit ion from pigaback  t o  underslung would cause l e s s  change i n  
s t a b i l i t y  than shown i n  f igure 9. Thus it i s  concluded t h a t  the measured 
changes i n  longitudinal s t a b i l i t y  due t o  the posit ion of the upper stages 
should not be detrimental t o  the choice of e i t h e r  arrangement. 

The e f f ec t s  of the several  upper-stage arrangements are  shown i n  
f igure 10 i n  terms of the aerodynamic-center location. I n  t h i s  f igure 
the s h i f t  i n  aerodynamic-center location w i t h  Mach number f o r  the one- 
stage rocket booster and spacecraft i s  nearly 15 percent, whereas t h a t  
fo r  the two-stage rocket booster and spacecraft is  only about 9 percent. 
Generally the spacecraft  configuration and the change from a piggyback 
t o  an underslung arrangement d id  not a f f ec t  the aerodynamic-center sh i f t  
i n  the transonic speed range. 

Drag and L/D.- The data  from which the ze ro - l i f t  drag-coefficient 
curves of f igures  7, 8, and 9 were derived have been supplemented by the 
addition of t e s t  points a t  M = 0.94 and 1.02. Comparison of f igures  7 
and 8 shows tha t  when the one-stage rocket booster was used the drag r i s e  
near sonic speed was la rger  and steeper than when the two-stage rocket 
booster w a s  used. Such a r e s u l t  would be expected from the more adverse 
area d i s t r ibu t ion  of the configuration w i t h  the one-stage rocket booster. 
The e n t i r e  booster f ron ta l  area of the one-stage rocket booster must be 
added near the peak of the area-distribution curve f o r  the recoverable 
booster alone. Figure 9 indicates  that ,  from a drag standpoint, nei ther  
the piggyback nor the underslung arrangement i s  t o  be preferred. 

Figure 11 shows t h a t  the in s t a l l a t ion  of the winged-rocket space- 
c r a f t  generally resulted i n  a s m a l l  decrease i n  maximum L/D and t h a t  
t h i s  decrease w a s  g rea tes t  when the two-stage rocket booster w a s  used. 
Also shown i s  the f a c t  t ha t  mounting the upper stages on the fuselage 
side (underslung) gave s l i g h t l y  higher values of (L/D),,, than mounting 
them on the wing side (piggyback), although the differences were s m a l l .  
This cha rac t e r i s t i c  probably w i l l  not continue in to  the hypersonic speed 
range. 

-, 
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hw-Wing Recoverable Booster 

bng i tud ina l  s t a b i l i t y . -  As  previously observed f o r  the high-wing 
recoverable-booster arrangements, f igures  12 and 13 show t h a t  with the 
low-wing recoverable booster the e f f e c t s  of interchanging the  one- and 
two-stage rocket boosters and of interchanging the spacecraft  were s m a l l .  
A s m a l l  negative change i n  
stage rocket booster i n  place of the single-stage rocket booster. When 
the winged-rocket spacecraft w a s  attached t o  e i t h e r  the one- o r  two-stage 

as shown i n  f ig-  rocket booster a small destabi l iz ing increment i n  C 

ures 15 and 16, w a s  experienced. 

&,o resul ted from i n s t a l l a t i o n  of the two- 

L 
1 
9 

-3 
5 

%L’ 
This increment was about 0.01 f o r  the 

one-stage rocket booster and about 0.02 for the two-stage rocket booster 
and w a s  approximately uniform throughout the Mach number range. Mounting 
the winged-rocket spacecraft and two-stage rocket booster on the fuselage 
side (piggyback) r a the r  than i n  the underslung posit ion caused a decrease 
i n  s t a t i c  margin varying from 1.5 t o  3 percent. 
This r e s u l t  i s  s i m i l a r  t o  t h a t  observed f o r  the high-wing configuration. 
Figure 18 shows t h a t  the aerodynamic-center s h i f t  with Mach number w a s  
again greater for the configuration with one-stage rocket booster and 
sphcecraft than f o r  the configuration with two-stage rocket booster and 
spacecraft. The aerodynamic-center s h i f t  f o r  the former w a s  about 10 per- 
cent, whereas the s h i f t  f o r  the lat ter w a s  only 8 percent. 
the aerodynamic-center s h i f t  w a s  e s s e n t i a l l y  independent of the spacecraft 
configuration o r  the posit ion of the upper stages (piggyback or underslung). 

(See f i g s .  14 and 17.) 

In  a l l  cases, 

Drag and L/D.- Figures 15 and 16 show t h a t  the transonic drag rise 
f o r  the low-wing arrangement w a s  e s s e n t i a l l y  independent of t he  spacecraft, 
but as mentioned e a r l i e r  f o r  the high-wing arrangement, the one-stage 
rocket booster produced l a rge r  transonic drag r i s e  than the two-stage 
rocket booster, and the drag rise commenced a t  a lower Mach number and 
w a s  more abrupt, as w e l l .  Furthermore, f igure 17 shows t h a t  the posi t ion 
of the upper stages had no e f f e c t  on the transonic drag-rise character- 
i s t i c s .  Figure 19 shows t h a t  s m a l l  decreases i n  maximum L/D resul ted 
when the winged-rocket spacecraft w a s  i n s t a l l e d  on the rocket boosters. 
Insignificant differences i n  maximum L/D are shown f o r  t he  two rocket 
boosters, the three spacecraft, and the two upper-stage posit ions 
(piggyback and underslung). 

Recoverable Booster Without and With Upper Stages 

Data from reference 2, which reports  the charac te r i s t ics  of the 
recoverable booster, have been compared with the r e s u l t s  of the present 
t e s t s  t o  ascer ta in  the aerodynamic e f fec ts  of adding large upper Stages. 
The configuration selected f o r  the comparison consisted of the low-wing 
recoverable booster with the two-stage rocket booster and winged-rocket 
spacecraft mounted i n  the underslung posit ion.  These upper stages were 

UNCLASSIFIED L 
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selected because they were the la rges t  ones t e s t ed  and would be expected 
t o  produce the l a rges t  changes. 

The e f f ec t  of the upper stages on the longi tudinal  s t a b i l i t y  i s  
shown i n  f igure 20 f o r  the selected moment reference. The s t a b i l i t y  
change i s  shown t o  be negligible.  Examination of the curves from which 
f igure 20 w a s  derived showed t h a t  a negligible change i n  
when these upper stages were added. Changes i n  the flow f i e l d  near the 
leading edge of the  f i r s t - s t age  wing, caused by the location of the space- 
c r a f t  forward of the wing, apparently compensated f o r  the moment contribu- 
t i o n  due t o  the drag of the  rocket booster t o  r e s u l t  i n  t h i s  s m a l l  change 
i n  Cm,o. The drag-coefficient change shown in  f igure 20, however, i s  
s ign i f icant .  A t  subsonic speeds, the drag-coefficient increase w a s  
about 0.004, of which the base drag of the rocket booster contributed 
about O . O O l 5  and the increase i n  skin f r i c t i o n  contributed an estimated 
0.002. A t  M = 1 .2  the increment increased t o  about 0.008, which amounts 
t o  about a 50-percent increase over the drag coeff ic ient  of the  recover- 
able booster alone. This drag increase could have been subs tan t ia l ly  
reduced by the addition of a closure f a i r i n g  on the base of the  rocket 
booster, since the drag coeff ic ients  shown include the base drag of t h i s  
booster, which i s  estimated t o  be about 0.003 a t  M = 1.2. The transonic 

I drag l e v e l  w i l l  probably be a major control l ing f ac to r  i n  the design of 
a su i tab le  powerplant configuration f o r  the recoverable booster, inasmuch I 
as it i s  desirable  t o  have a large excess of t h rus t  over drag t o  reduce 
the acceleration f u e l  required. 

C&o resul ted 

I 

The aerodynamic charac te r i s t ics  a t  a s ides l ip  angle of 5' are shown 
f o r  the recoverable booster without and with the upper stages i n  f igure 21, 
and the la te ra l -d i rec t iona l  s t a b i l i t y  der ivat ives  are shown i n  f igure 22. 
I n s t a l l i n g  the upper stages caused l i t t l e  change i n  the magnitude of the 

but decreased the d i rec t iona l  s tab i l -  e f f e c t  ive-dihedral parameter 

i t y  as much as 50 percent. The large increase i n  the side-force parameter 
also demonstrates the e f f ec t  of the large upper stages. Because of the 
grea t  reduction i n  

angle of attack, configurations such as t h i s  may encounter Dutch ro l l  
o sc i l l a t ions  a t  the s teep climb a t t i tude  expected f o r  t h i s  type of vehicle. 
This tendency may be a l lev ia ted  by an increase i n  the e f fec t ive  ver t ica l -  
f i n  area t o  increase the d i rec t iona l  s t ab i l i t y ,  an improvement believed 
necessary f o r  hypersonic speeds. 

c z P  

coupled with the high values of C a t  high 
CnP 2 P  

SUMMARY OF RESULTS 

An investigation a t  transonic speeds has been made i n  the Langley 
transonic pressure tunnel t o  ascertain the aerodynamic characteris$ics 
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of several  launch configurations composed of large expendable rocket 
boosters and various spacecraft  mounted i n  p a r a l l e l  with one concept of 
a horizontal-take-off-and-horizontal-landing recoverable booster. The 
data  have been compared with previously obtained da ta  f o r  the  recoverable 
booster alone t o  determine the e f f e c t s  of the  addition of the upper stages 
t o  the recoverable booster. The pr inc ipa l  r e s u l t s  were as follows: 

1. The changes i n  longitudinal s t a b i l i t y  caused by using a two-stage 
rocket booster ra ther  than a one-stage rocket booster were s m a l l .  Neither 
a piggyback nor  an underslung arrangement seemed t o  o f f e r  pa r t i cu la r  
advantages . L 

1 
9 
3- 
5 

2. For a l l  upper-stage arrangements, the  winged-rocket spacecraft  
produced a s m a l l  reduction i n  s t a t i c  margin which w a s  less when the space- 
c ra f t  wing w a s  located behind the leading edge of the  f i r s t - s t age  wing 
t h a n  ahead of it. 

3. Arrangements with the one-stage rocket booster resu l ted  i n  higher 
transonic drag than those with the  two-stage rocket booster. 

4. Neither the  high-wing nor the low-wing arrangements demonstrated 
superior transonic-drag or drag-rise charac te r i s t ics .  

5 .  Addition of the  la rges t  upper s tages  d id  not change the longitu- 
d ina l  s t a b i l i t y  of the basic  recoverable booster. 

6. Addition of the  upper stages caused a transonic drag increase of 
about 50 percent of the  value f o r  t he  recoverable booster alone, but a 
s izable  reduction could be achieved by addi t ion of su i tab le  closure 
fa i r ings  a t  the rocket base. 

7. Addition of the upper stages d id  not change the  la teral  s t a b i l i t y ,  
but reduced the d i rec t iona l  s t a b i l i t y  near ly  50 percent. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va. ,  May 1, 1962. 

U NCLASSI FI ED 



.u 

. 

L 
1 
9 
3 -  
5 

UNCLASSIFIED 
13 

REFERENCES 

1. Pierpont, P. Kenneth: Transonic S t a b i l i t y  of a Preliminary Vertical-  
Take-Off Launch Configuration With a Horizontal-Landing Recoverable 
Booster. NASA 'I'M x-689, 1962. 

2. Pierpont, P. Kenneth: Transonic Longitudinal and Latera l  Aerodynamic 
Character is t ics  of a Preliminary Concept of a First-Stage Horizontal- 
Take-Off-and-Horizontal-Landing Recoverable Booster With a 70' Delta 
Wing. NASA TM x-691, 1962. 

UNCLASSIFIED *. 



14 

TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL 

. 

. 
Recoverable booster: 

Fuselage: 
Length. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Forebody fineness r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . .  
Afterbody fineness r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . .  
Base area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Total area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Wing: 

Span.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Root chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tip chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Thickness. percent chord . . . . . . . . . . . . . . . . . . . . . . . . .  
Leading-edge sweep angle. deg . . . . . . . . . . . . . . . . . . . . . .  
Mean aerodynamic chord. i n  . . . . . . . . . . . . . . . . . . . . . . . .  
Moment reference center. percent E . . . . . . . . . . . . . . . . . . . .  
Moment reference center. i n  . from base . . . . . . . . . . . . . . . . . .  
Area (exposed). sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  
span (exposed). i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Root chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tip chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Thickness. percent chord . . . . . . . . . . . . . . . . . . . . . . . . .  
Leading-edge sweep angle. deg . . . . . . . . . . . . . . . . . . . . . .  

Vertical  tail: 

33.00 

7.0 
6.1 

4.16 

2.52 

396 
24.00 
33.00 

0 
2 

70.0 
22.00 

25 
16.5 

16.43 
3.46 
9-50 

0 
2 

70.0 

One-stage rocket booster: 
Length. not including interstage. i n  . . . . . . . . . . . . . . . . . . . .  13.08 
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.40 
Length/Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 

Two-stage rocket booster: 
Length. not including interstage. i n  . . . . . . . . . . . . . . . . . . . .  31.92 
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.40 
Len&h/Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.3 

B a l l i s t i c  spacecraft : 
Length. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-35 
Base diameter. in . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.40 
Nose-cone included angle. deg . . . . . . . . . . . . . . . . . . . . . . .  40.0 
Nose radius. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.50 

Rocket spacecraft: 
Length. including interstage. i n  . . . . . . . . . . . . . . . . . . . . . .  8.04 
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.00 
Nose-cone included angle. deg . . . . . . . . . . . . . . . . . . . . . . .  40.0 
Nose radius. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.20 

Winged- rocket spacecraft: 
Body diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.00 
Length. including interstage. i n  . . . . . . . . . . . . . . . . . . . . . .  8.04 
Nose-cone included angle. deg . . . . . . . . . . . . . . . . . . . . . . .  40.0 
Nose radius. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.20 
Wing area. total .  sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  15.38 
Wing area. exposed. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . .  9.69 
Wing thickness. percent chord . . . . . . . . . . . . . . . . . . . . . . .  10 
Leading-edge radius. percent chord 5 
m o t  chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.5 
Tip chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Leading-edge sweep angle. deg . . . . . . . . . . . . . . . . . . . . . . .  70.0 

. . . . . . . . . . . . . . . . . . . . .  
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One-stage rocket booster 

TWO-stage rocket booster 

-Spherical radius = 0.50 

k.3Y 
Ballistic spoceuuft 

Rocket spacecraft 

,-Radius =0.26 

LSpherical radius = 0.20 
Winged- rocket spacecraft 

(c) Dimensions of rocket boosters  and spaqecraft. 

Figure 1. - Concluded. 
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(a) Winged-rocket spacecraft attached t o  one-stage rocket booster mounted 
beneath low- wing recoverable booster . 

I 

(b)  Winged-rocket spacecraft attached, -Eo one-stage rocket booster mounted 
on top of low-wing recoverable booster. 

( c )  Winged-rocket spacecraft attached t o  two-stage rocket booster mounted 
beneath low-wing r e  cove rable  booster . 

I,- 62- 2052 
Figure 2.- Photographs of HTOHL recoverable booster w i t h  various upper- 

stage arrangements. - -* UNCLASSIFIFD 



(d) B a l l i s t i c  spacecraft  attached t o  two-stage rocket booster mounted 
beneath low-wing recoverable booster. 

L 62-2053 
( e )  B a l l i s t i c  spacecraft  attached t o  two-stage rocket booster mounted 

on top of high-wing recoverable booster. 

Figure 2. - Concluded. 
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Y.6 .7 .8 9 I .o 1.1 I .2 
Mach ;umber, M 

. 

Figure 3.- Variation with Mach number of t e s t  Reynolds number per foot .  
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(a) Variation of lift coefficient with angle of attack. 

Figure 4. - Aerodynamic characteristics of the several spacecraft 
to a one-stage rocket booster mounted on top of the high-wing 
able booster. 

attached 
recover- 
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(b) Variation of drag coefficient with lift coefficient. 

Figure 4. - Continued. 
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. 
(c) Variation of pitching-moment coefficient with lift coefficient. 

Figure 4. - Continued. 
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(d )  Variation of base-drag coef f ic ien t  with l i f t  coeff ic ient .  

Figure 4. - Concluded. 
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Lift coefficient, CL 

(a) Variation of l i f t  coeff ic ient  with angle of a t tack.  

Figure 5.- Aerodynamic charac te r i s t ics  of the several  spacecraft attached 
t o  a two-stage rocket booster mounted on top of the high-wing recover- 
able booster. - 
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Lift coefficient,$ 

(b )  Variation of drag coeff ic ient  w i t h  lift coeff ic ient .  

Figure 5. - Continued. 
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. ( c )  Variation of pitching-moment coeff ic ient  w i t h  l i f t  coeff ic ient .  

Figure 5.  - Continued. 
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(d) Variation of base-drag coef f ic ien t  with l i f t  coeff ic ient .  

Figure 3.  - Concluded. 
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E f t  coefficient,CL 

. 
(a) Variation of l i f t  coefficient 

Figure 6. - Aerodynamic character is t ics  of 
attached t o  a two-stage rocket booster 
high-wing recoverable booster. 

1 

with angle of a t tack .  

the winged-rocket spacecraft  
mounted above or beneath the 
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Lift coefficient,CL 
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(b)  Variation of drag coef f ic ien t  w i t h  lift coef f ic ien t .  

Figure 6. - Continued. - 
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(c) Variation of pitching-moment coefficient with lift coefficient. 

Figure 6.- Continued. - UNCLASSIFIED 
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o Upper stages on wing side 
o Upper stages on fuselage side - 
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b) 

,004 
0 

U 
I 

E! 

$ 0  : 

Lift coefficient ,Ci 
(d)  Variation of base-drag coef f ic ien t  with l i f t  coef f ic ien t .  

Figure 6.- Concluded. 
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Bo IIi st ic spacecraft 
, - - -  Rocket spacecraft 

- Winged-rocket spacecraft 
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Mach number, M 

( a )  With one-stage rocket booster. 
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04 

Ballistic Spacecraft 

W i nged-rocket spacecraft 
Winged-rocket spacecraft 

--- Rocket spacecraft *2  

.6 .7 .8 .9 I .o 1.1 ' 1.2 
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Mach number, M 

(b)  With two-stage rocket booster. 

Figure 10.- Variation of the aerodynamic-center locat ion with Mach number 
for the several  upper stages mounted on top  of the  high-wing recover- 
able booster. 
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0 Ballistic spcecraft 
0 Rocket spacecraft 
0 Winged-rocket spacecraft 

(a) With one-stage rocket booster. 

Figure 11.- Variation of the l i f t -drag  r a t i o  with lift coeff ic ient  f o r  
the several  upper stages mounted on top  of the high-wing recoverable 
booster . 
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o Ballistic spacecraft 

Rocket spacecraft 
0 Winged-rocket spacecraft 
A Winged-rocket spacecraft 

on fuselage side 
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Lift coefficient, CL 

(b) With two-stage rocket booster. 

Figure 11. - Concluded. 
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(a) Variation of l i f t  coefficient with angle of a t tack.  

Figure 12.- Aerodynamic character is t ics  of the several  spacecraft  
attached t o  a one-stage rocket booster mounted beneath the low- 
wing recoverable bms te r .  - UNCLASSIFIEIR 
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(b) Variation of drag coefficient with lift coefficient. 

Figure 12. - Continued. 
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Lift coefficient, CL 

. ( e )  Variation of pitching-moment coefficient with lift coefficient. 

Figure 12. - Continued. 
L. 

UNCLASSIFIED 



- 
0 Ballistic spacecraft 
0 Rocket spacecraft 
0 Winged-rocket spacecraft 

.004 

0 

,004 
9 n 
0 
t - E o  

,004 

-. I 0 . I  .2 .3 .4 .5 .6 .7 .8 
0 
-.2 

Lift coefficient, C, 

(d )  Variation of base-drag coef f ic ien t  with l i f t  coeff ic ient .  

Figure 12. - Concluded. 
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Lift coefficient, C,- 

( a )  Variation of l i f t  coeff ic ient  with angle of a t tack.  

. Figure 13.- Aerodynamic character is t ics  of the several  spacecraft  
attached t o  a two-stage rocket booster mounted beneath the low- 
wing recoverable booster. 



Lift coefficient,CL 

(b) Variation of drag coef f ic ien t  w i t h  l i f t  coef f ic ien t .  

Figure 13. - Continued. 
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(d) Variation of base-drag coe f f i c i en t  w i t h  lift coef f ic ien t .  

Figure 13. - Concluded. 
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. (a) Variation of l i f t  coefficient with angle of attack. 

Figure 14.- Aerodynamic character is t ics  of the winged-rocket spacecraft  
attached t o  a two-stage rocket booster mounted above or beneath the 
low-wing recoverable booster. - U NCLASSI FlED 



(b) Variation of drag coef f ic ien t  with l i f t  coef f ic ien t .  

Figure 14. - Continued. 
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(c) Variation of pitching-moment coefficient with lift coefficient. 

Figure 14. - Continued. 

I) IVLLHSSI FiED 



e 
--, 

o Upper stages on wing side 
o Upper stages on fuselage side 
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Variation of base-drag coef f ic ien t  with l i f t  coeff ic ient .  

Figure 14. - Conc luded. 
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Ball istic spacecraft 

- Winged-rocket spacecraft 
-- W i ng ed- roc ke t spacecraft . 

on fuselage side 

--- Rocket spacecraft 

I 
0 .- (a )  With one-stage rocket booster. 

(b) With two-stage rocket booster. 

Figure 18. - Variation of the aerodynamic-center location w i t h  Mach number 
for the several  upper stages mounted beneath the low-wing recoverable 
booster. 
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Figure 19.- Variation of the l i f t -drag r a t i o  with l i f t  coeff ic ient  for 
the several  upper stages mounted beneath the low-wing recoverable 
booster . - U N CLASS i Fl ED 
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(b) With two-stage rocket booster. 

Figure 19. - Concluded. 
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(a) Variation of rolling-moment coef f ic ien t  with angle of a t tack .  

Figure 21.- Aerodynamic c h a r a c t e r i s t i c s  f o r  the low-wing recoverable 
booster without and with a two-stage rocket booster and winged- 
rocket spacecraft mounted beneath the wing. p = 5O. 
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(c) Variation of side-force coefficient with angle of attack. 

Figure 21. - Concluded. 
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Figure 22. - Lateral-directional s t a b i l i t y  parameters f o r  the low-wing 
recoverable booster without and with a two-stage rocket booster and 
winged-rocket spacecraft  mounted beneath the wing. 
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Figure 22. - Concluded. 
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